USDA/NOSB Dairy Pasture Symposium Kathy Soder **Research Animal Scientist USDA-ARS** Pasture Systems & Watershed Management Research Unit, University Park, PA

Challenges in Adopting Pasture Requirement

- Sufficient scientific proof
- Application of national standard to all portions of the country
- Enforceability
- Objectively measuring days on pasture or pasture intake
- Milk quality issues during nonpastured periods

Factors Affecting pDMI

- Animal
- Forage
- Environment

Factors Affecting pDMI Animal

- Time spent grazing
 - -Gut fill
 - -8-9 h optimum (full pasture)
 - -12-13 h max
- Grazing Patterns
 - -3-5 major meals/d
 - -2-3 h at dawn, 4-5 h at dusk

Factors Affecting pDMI Animal

- Biting rate, bite mass
 - -0.4 to 0.7 g DM/bite
 - 45-60 bites/min
 - 13-15 kg DM pasture/d
 - 40,000+ bites/d
 - Affected by forage

Rook et al., 1994; Bargo et al., 2001; Soder et al., 2006

How will a "day" be defined if the 120-d minimum requirement is adopted?

How will a "day" be defined if the 120-d minimum requirement is adopted?

Graze until animals are full? Minimum number of hours? Minimum daily intake requirement?

Factors Affecting pDMI Animal

- Stage of lactation
- Body Size/condition

Combs, 2001

Forage

Quality/QuantityDigestibility

Factors Affecting pDMI Environment · Temperature, humidity, sun · Time of Day Supplementation ·Time, amount, type

pDMI is a Complex Issue

- Many variables that affect pDMI within and between days
- From a scientific standpoint, pDMI is difficult to quantify

Measuring pDMI

- Currently cannot *measure* pDMI
- Estimates only
- Can be subjective, variable
- Pre- and post-grazing heights/Rising Plate Meter
 - Utilization rates?

Is a pDMI requirement enforceable?

30% DMI From Pasture

- At face value, not totally unachievable
- Average over grazing season, or absolute daily minimum?
- How to account for drought/wet weather?
 - Absolute minimum per day, every day, or...
 - Average over the 120 minimum grazing season?

pDMI With Supplementation

- 50-60% pDMI maintained high levels (70-80 lb.) of milk production (Bargo et al., 2003; Soder et al., 2006)
- Must consider long-term effects on body condition, reproduction
- Type of supplement must be considered
- pDMI will be lower with pTMR supplementation
- Milk components

Kolver, 2000; Bargo et al., 2002; Soder et al., 2006

- Washburn et al. (2002) showed lower incidence of mastitis in pastured herds in NC
- \downarrow SCC on pasture
 - Vermont (Goldberg et al., 1992)
 - Hungary (Bela et al., 1995)
- Minnesota study showed no difference in SCC (Rust et al., 1995)

Milk Quality Milk Fatty Acids

 Total milk fat production usually decreases on pasture (Kolver and Muller, 1996, Bargo et al., 2001, Soder et al., 2006)

ConfinePastureConfinePastureHolsteinHolsteinJerseyJerseyMilk Fat, %3.333.234.103.68

White et al., 2001

- Conjugated Linoleic Acid (CLA)
- Omega-3 and Omega-6

Factors Affecting CLA Concentration in Milk Fat

Factors

- Pasture vs. TMR
- Higher forage diets
- Unsaturated fat from flax seed, sunflower, cottonseed
- Fish oil
- Combinations of above
- Genetics

<u>CLA Conc. in Milk Fat</u> 2-4 fold ↑ 2 fold ↑ 2-3 fold ↑ ↑ CLA and omega-3 FA Further ↑ CLA

may be 5 to 10 fold ↑ ?

CLA Content of Milk from Grazing Cows

Dhiman et al. 1996, 1999

Effect of Turning Cows out to Pasture on CLA of Milk

Khanal et al. 2003

In Praise of Older Cows

 Older dairy cows produce more CLA than younger cows. Specifically, a cow that has gone through four lactations (cycles of milk production) produces more CLA than she did when she was younger.

Omega-3 and -6 Content of Milk from Grazing Cows

Treatment

Dhiman et al., 1999

Factors to Consider

- Regulations need to be enforceable and measurable
- Will stricter regulations exclude too much of the population?
- Would it be feasible to market "pasture-raised" within the current organic standards?
- Consider wide variation in climate and management across the country
- Consider non-grazing season

Cows were offered new grass either AM or PM. WSC was higher PM. There was no effect on intake but milk yield was 5% higher.

Grazing behaviour of cows was observed for 6 days, with a total solar eclipse on the 3rd day at 11 am. The eclipse had no effect on temporal pattern of grazing.

Diurnal preference for grass and clover

Rutter et al. 1998

Effect of timing of herbage allocation

	Time of		
	allocation		
	AM	PM	
Herbage intake (kg			
DM/cow			
(07:45 to 16:45 h)	12.1	2.2	
(16:45 to 07:45 h)	5.7	15.8	
Total	17.8	18.0	
Water soluble			
carbohydrate			
(%DM)			
morning	18.1	16.2	
evening	15.9	20.3	
Milk Yield (kg/day)	21.8	23.1	
in week 10			

Rutter et al., 2000

How would one national standard be written to cover all climates and management systems?

NEW YORK DAIRY FARMS (SIX YEAR AVERAGE (1996-2001)^a

	<u>Graziers</u>	Non-Graziers	Difference
No. Farms	58	105	
No. Cows	85	83	
Milk sold/cow, kg	7,875	8,333	-458
Operating cost/kg, \$ mi	ilk .23	.25	02
NFI/cow, \$	460	389	+71
Return on Equity, %	3.8	1.5	
Vet. & Med/cow, \$	61	74	-13
Machine costs/cow, \$	479	541	-62
Investment/cow, \$	6,533	7,500	-967

Milk Production On Pasture is Economic Optimization Not Making the Most Milk Per Cow

Pasture Quality

- Nutrient quality of well managed pasture is higher than same plant material harvested as silage or hay
- Develop supplement strategies:
 - Make efficient use of the positive nutritional attributes of pasture
 - Improve the nutritional imbalances and limitations of pasture

FACT:

- Supplemental grain (energy) is required for most high genetic cows (profitability)
- With substitution effect:
 - grain fed
 - pasture intake
 - total DMI
- Substitution Rate 0.5 kg

Concentrate
 ¹ kg; pasture
 ¹ 0.5 kg DM

Expected Economic Response (Early Lactation) to Supplemental Concentrates

Pas	ture ^a	Conc	entrate ^b	Tota	al	Milk⁰		INC/FC ^e	Marginal Return
DMI	Cost	DMI	Cost	DMIc	Cost	(kg)	(\$)	(\$)	(\$)
Kg	(\$)	(kg)	(\$)	(kg)	(\$)				
18	1.19	0	0	18	1.19	21.0	5.99	4.80	
17	1.12	2	.35	19	1.47	23.3	6.64	5.17	0.37
16	1.06	4	.70	20	1.76	25.4	7.24	5.48	0.31
15	.99	6	1.05	21	2.04	27.0	7.70	5.66	0.18
14	.92	8	1.40	22	2.32	28.4	8.09	5.77	0.11
13	.86	10	1.75	23	2.61	29.6	8.44	5.83	0.06

^aPastue cost - 6.6¢ /kg. DM

^bConcentrate cost – 17.5¢/kg. DM

^cAssume substitution rate of 0.5 (1 kg. grain with 0.5 kg. decrease in pasture DMI)

^dMilk price – 28.5¢ /kg. of 3.5% milk; milk:feed price ratio is 1.65:1

^eIncome minus feed cost

^fDoes not consider long-term benefits on body condition and reproductive performance.

Milk and Profit Response to Supplementation ^a		
	Early Lactation	Mid Lactation
Expected kg milk response/ kg suppl. Milk:Feed price ratio	0.8 to 1.2	.6 to .8
>1.50:1	Profit	Profit
1.25: 1	Profit	Break even
1.00:1	Break even	Loss
<1.00:1	Loss?	Loss

^aDoes not consider long term benefits on body condition and reproduction Supplementation with Grains with Differing Carbohydrate Degradation Rates

StudyBarley vs. Corn1 - late spring (5.5 kg) $1.2 kg \uparrow milk$ >Barley \downarrow rumen NH₃N $1.6 kg \uparrow milk$ 2 - 140 DIM (6.8 kg) $1.6 kg \uparrow milk$ >Barley/corn mix the best $1.4 kg \uparrow milk$

SUGGESTS: Need to provide energy sources that differ in rumen carbohydrate degradation

Using "Partial" TMR to Provide Grain

- Provides more uniform ration with less chance of rumen disruption
- Forage fed with grain

 Reduce risk of rumen digestive problems
- Monitoring of DMI should be more accurate
- Corn silage balances well with pasture
- Higher milk production/cow
- Economics?

Responses to Supplements

- Immediate response during feeding
- Residual response after cessation of feeding
- TOTAL
 RESPONSE

Potential Human Health Benefits to CLA

- Anticarcinogenic
- Reduce risk of heart disease
- Prevent onset of diabetes
- Enhance immune function
- Improves bone formation
- Reduced body fat

ANTI CARCINOGENIC

Reduces incidence of tumors (in vivo)
- Mammary (breast)
- Prostate
- Skin
- Stomach

Representative/relative concentrations of CLA in uncooked foods

Food	Total CLA (mg/g fat)		
Dairy Products			
Homogenized Milk	5.5		
Butter	4.7		
Ice cream	3.6		
Cheddar cheese	3.6		
Mozzarella cheese	4.9		
<u>Meat</u>			
Fresh ground beef	4.3		
Lamb	5.6		
Pork	0.6		
Chicken	0.9		
Fish	0.3		

Conc

- Fat from Dairy products has benefits
- Important to monitor overall fat intake
- Fresh forage provides increased levels of CLA

Summary of CLA

- Only produced in ruminant animals
- Amount can be 1 in dairy products by diet
 1 in pasture fed cows
- Potential benefits to human health
- "Designer milk" Potential opportunity
- Currently no economic incentive

Pasture as Only Forage

High Quality and Quantity

- DMI of 37-40 lb from pasture

(3.0 - 3.2% of BW)

- Loss of body condition likely
- Reproductive performance?
- Milk production -45-55lb/da

Kolver and Muller, 1996

With No Grain Supplementation

Pasture Expected Milk Yield^a Ib/cow/day

Grasses40-50Grass/legume mixture45-55

^aAssume no body weight loss or gain ^bHolsteins

Kolver and Muller, 1996

Economic Response to Grain Supplementation

Data from Larry Muller, PSU

Experiment 1 (Unsupplemented): Grazing behavior

	Pa		
	Allo		
	Low	High	SEM
Grazing time, min/d	461 ^a	638 ^b	46
AM, min	324	337	27
PM, min	137 ^a	301 ^b	34
Biting rate, bites/min	52	57	2
Bite mass, g DM/bite	0.66 ^a	0.53 ^b	0.03

^{a, b} Means in rows with different superscripts differ (P < 0.05)

