

University of New Hampshire College of Life Sciences and Agriculture

The role of legumes in forage mixtures: Effects on your bottom line

André F. Brito, Veterinarian, M.S., Ph.D. Department of Agriculture, Nutrition, and Food Systems University of New Hampshire andre.brito@unh.edu (603) 834-8600

> NODPA Virtual Annual Meeting September, 2020

Outline

• Dietary and management strategies to improve energy intake in forage-based rations

• Why legumes are important in dairy diets?

 Effect of different legume-grass mixtures on milk production and milk fatty profile in dairy cows: Results from feeding trials conducted at the University of New Hampshire Organic Dairy Research Farm (Lee, NH)

Summary and Conclusions

High-forage feeding survey results

Question 6 – In the herds that have increased the level of forage in the ration, what have been the benefits? (More than 1 answer can be selected).

Benefit	% of Responses
Increased milk production	32.2
Increased milk fat and protein levels	74.5
Lower purchased feed costs	84.7
Improved animal health	76.3
Lower culling rate	20.3
Cows stay in the herd longer	28.8
Improved profitability	76.3

Source: Chase (2017)

Pasture net energy of lactation (NE_L) in northeastern organic dairies

Table 2. Summary statistics (n = 380) of forage quality parameters and macro minerals and the effect of year, month, and farm on forage quality and macro mineral concentration of pastures in 2012, 2013, and 2014

						P-value	
Item	Mean ¹	SD1	Min ¹	Max ¹	Year	Month	Farm
Forage quality							
CP, %	19.5	4.10	6.60	32.4	0.25	< 0.01	< 0.01
ADF, %	31.4	4.79	18.0	73.0	0.75	<0.01	< 0.01
NDE %	51.0	9.67	24.2	71.0	<0.01	<0.01	<0.01
NE, Mcal/kg	1.39	0.15	0.77	1.76	0.03	< 0.01	<0.01
macro minerais*							
Ca, %	0.76	0.25	0.19	1.66	<0.01	<0.01	< 0.01
P, %	0.36	0.08	0.07	1.04	0.23	< 0.01	< 0.01
Mg, %	0.28	0.06	0.10	0.46	<0.01	<0.01	< 0.01
K, %	2.68	0.60	0.26	4.69	0.02	0.03	< 0.01
S, %	0.28	0.05	0.09	0.44	0.14	<0.01	<0.01

¹Mean, SD, minimum (Min), and maximum (Max) values across all farms and all months sampled in 2012, 2013, and 2014.

²Near-infrared reflectance spectroscopy analysis for sodium was missing on many samples; therefore, it is not included.

NE_L Mean = 0.63 Mcal/lb Minimum = 0.35 Mcal/lb Maximum = 0.80 Mcal/lb

Source: Hafla et al. (2016)

Milk production response to increasing levels of ground corn-based grain in grazing Holstein cows

Source: Brink

Diurnal variation in sugars and starch in alfalfa

NSC = non-structural carbohydrates SC = soluble carbohydrates Source: Pelletier et al. (2010)

Sugars and starch in PM- vs. AM-cut alfalfa baleage

	Ti	me of cutting		
Item ¹	PM	AM	\mathbf{SED}^2	P-value ³
DM, g/kg of fresh matter	537	524	15.4	0.44
		g/kg of DM		
TNC^4	128	105	3.00	< 0.01
Total reducing sugars	89.0	67.5	2.30	< 0.01
Pinitol	22.0	26.0	0.80	< 0.01
Starch	17.1	11.4	0.67	< 0.01
WSC ⁵	111	93.5	2.50	< 0.01

TNC = total nonstructural carbohydrates WSC = water soluble carbohydrates Source: Brito et al. (2008)

Intake increased in dairy cows fed PM-cut alfalfa baleage

Increased milk production in cows fed PM-cut alfalfa baleage

Milk fat and protein production in cows fed PM-cut alfalfa baleage

Correlation between legume proportion in pasture and forage quality traits

<u>Parameter</u>	Correlation coefficient	<u>Significance</u>
Crude protein	0.41	*
Soluble protein	0.00	ns
Acid detergent fiber	-0.58	**
Neutral detergent fiber	-0.57	**
Net Energy of Lactation	0.53	
Total digestible nutrients	0.58	**
Phosphorus	0.08	ns
Potassium	-0.09	ns
Magnesium	0.28	ns
Calcium	0.54	**

Source: Bosworth and Cannella (2007) ns = not significant

Relationship between legume proportion in pasture and forage quality traits

Source: Bosworth and Cannella (2007)

Effect of forage type on feed intake and milk production

	Forage		
Item	Grasses	Legumes	P-value
Dry matter intake, lb/day	40.3	43.2	0.001
Milk production, lb/day	54.0	57.5	<0.001
Energy-corrected milk, lb/day	53.6	55.8	0.006
Feed efficiency ¹ , lb/lb	1.33	1.30	0.20
OM digestibility ² , %	70.4	67.9	0.01

¹Feed efficiency = energy-corrected milk/dry matter intake

²OM = organic matter

Source: Johansen et al. (2018)

Effect of forage type on feed intake and milk production

	Forage type								
ltem	Grasses	White clover	Red clover	Alfalfa	Birdsfoot	P-value			
Dry matter intake, lb/d	41.7 ^b	44.1 ^{ab}	44.1 ^a	46.3ª	48.1 ^{ab}	<0.001			
Milk production, lb/d	57.8 ^c	65.3ª	60.2 ^b	61.1 ^b	69.2ª	<0.001			
Energy-corrected milk, lb/d	56.7 ^d	61.9 ^{ab}	57.5 ^{cd}	59.5 ^{bc}	67.0ª	<0.001			
Feed efficiency ¹ , lb/lb	1.35	1.39	1.31	1.30	1.43	0.07			
OM digestibility ² , %	71.5 ^{ab}	73.6ª	69.4 ^b	66.0 ^c	67.2 ^{abc}	<0.001			

^{a,b,c,d}Values in same line with different letters differ at P < 0.05
 ¹Feed efficiency = energy-corrected milk/dry matter intake
 ²OM = organic matter
 Source: Johansen et al. (2018)

Condensed tannins

 Condensed tannins are secondary plant metabolites with complex and diverse chemical structures with a general affinity for binding to protein and to a lesser extent complex carbohydrates (Mueller-Harvey, 2006; Waghorn, 2008)

Effect of legume type on feed intake and milk production

	Silage sources ¹						
Item	ALF	RC	LBFT	NBFT	HBFT	SEM	P-value
Dry matter intake, lb/day	54.5	56.4	54.5	52.9	55.6	2.05	0.69
Milk production, lb/day	68.1 ^c	67.9 ^c	73.9 ^b	76.3 ^{ab}	78.0ª	2.36	<0.01
Feed efficiency ² , lb/lb	1.27 ^{bc}	1.24 ^c	1.38 ^{abc}	1.49ª	1.42 ^{ab}	0.07	0.01
Milk fat, lb/day	2.60 ^{bc}	2.78 ^c	2.71 ^{abc}	2.98ª	2.91 ^{ab}	0.17	0.03
Milk protein, lb/day	2.20 ^c	2.09 ^c	2.36 ^b	2.38 ^{ab}	2.51ª	0.08	<0.01
MUN ³ , mg/dL	11.4ª	11.0 ^{ab}	11.4 ^a	9.70 ^c	10.1 ^{bc}	0.63	0.04

^{a,b,c,d}Means in the same line with different letters differ at $P \le 0.05$

¹ALF = alfalfa silage; RC = red clover silage; LBFT = low condensed tannin birdsfoot trefoil silage; NBFT = normal

condensed tannin birdsfoot trefoil silage; HBFT = high condensed tannin birdsfoot trefoil silage

²Feed efficiency = energy-corrected milk/dry matter intake

³MUN = milk urea nitrogen

Source: Hymes-Fecht et al. (2013)

Pasture botanical composition in northeastern organic dairies

P-value

 Table 3. Pasture availability and botanical composition of participating farms in the northeastern

 United States during the 2012, 2013, and 2014 grazing seasons

ltem	2012 (SEM)	2013 (SEM)	2014 (SEM)	Year	Month × year
Pasture availability, kg/ha Botanical composition, %	1,320 (185)	1,048 (151)	871 (161)	<0.01	0.01
Grasses	61 (6)	54 (6)	50 (6)	0.04	0.16
Legumes	22 (5)	29 (4)	37 (5)	<0.01	0.07
Weeds	13 (3)	13 (2)	15 (3)	0.68	0.49

Source: Hafla et al. (2018)

Developing advanced perennial legume-grass mixtures harvested as stored feeds to improve herd productivity and mitigate greenhouse gas emissions in organic dairies in the Northeast

University of New Hampshire

United States Department of Agriculture National Institute of Food and Agriculture

Research objectives

> Evaluate productivity and forage quality of grass-legume mixtures

- Balance the energy:protein ratios of forages through species selection and stand management
- Evaluate animal performance

University of New Hampshire Organic Dairy Research Farm

- Area (111.3 ha): 48.6 ha (woodland), 40.5 ha (hayfields), and 22.3 ha (pasture)
- o ~45 lactating cows: pure-bred Jerseys
- Rolling herd average: 6,473 ± 503 kg
- Milk fat: 4.88 ± 0.09
- Milk protein: **3.63 ± 0.06**
- Milk SCC: **135,000**
- O MUN: 11.1 ± 2.9 mg/dL
- Grazing season: 40% pasture + 60% TMR
- Winter season: TMR (60% baleage + 40% concentrate)

Feeding trial methods

> Twenty organic-certified mid-lactation Jersey cows were used in both feeding trials

- Cows (n = 10/diet) were randomly assigned to 1 out 2 diets fed as TMR: alfalfa- or red clover-grass mix (Trial 1); red clover or red clover-white clover mix (Trial 2)
- Trials 1 and 2 last 7 and 6 weeks, respectively
- > Feed intake (Calan gates) and milk production measured throughout the studies
- > Samples (feeds, blood, feces, urine, rumen) were collected

Nutritional composition of baleages

	Baleage ¹						
Item	ALF-GR, 2 nd cut	ALF-GR, 3 rd cut	RC-GR, 2 nd cut	RC-GR, 3 rd cut			
Dry matter (DM), % as fed	42.7	48.9	75.7	32.3			
Crude protein (CP), % DM	20.9	21.8	20.1	20.5			
Soluble protein, % CP	63.0	62.0	25.5	40.5			
aNDFom, % DM	41.0	41.3	41.6	42.1			
ADF, % DM	31.7	33.1	29.9	33.7			
Lignin, % DM	6.05	7.25	5.05	7.95			
Starch, % DM	2.60	1.75	1.40	0.85			
Sugars, % DM	4.95	3.05	6.90	4.05			
Crude fat, % DM	3.20	3.65	3.75	3.35			
NE _L , Mcal/lb	0.63	0.60	0.68	0.57			

¹ALF-GR = alfalfa-grass mix; RC-GR = red clover-grass mix

Polyphenol oxidase (PPO) in red clover

- Oxidises phenols to quinones in the presence of oxygen
- Quinones are very reactive
- Quinones bind to proteins to give protein-quinone complexes

Source: Lee (2015)

Experimental diets

	Diets				
Item	Alfalfa-grass mix	Red clover-grass mix			
	% of diet dry matter				
Alfalfa-grass mix, 2 nd cut baleage	32.5	-			
Red clover-grass mix, 2 nd cut baleage	-	32.5			
Alfalfa-grass mix, 3 rd cut baleage	32.5				
Red clover mix, 3 rd cut baleage	-	32.5			
Grain mash	35.0	35.0			

Calan gates

Dry matter intake in cows fed alfalfa- or red clover-grass mix

Milk production in cows fed alfalfa- or red clover-grass mix

Milk composition in cows fed alfalfa- or red clover-grass mix

	Week 4		Wee	Week 7		<i>P</i> -value			-
Item	ALF-GR ¹	RC-GR ¹	ALF-GR ¹	RC-GR ¹	SEM ²	Forage	Week	Forage × Week	-
Milk fat, %	5.61	5.32	5.36	5.27	0.10	0.18	0.03	0.13	-
Milk fat, lb/day	2.78	2.45	2.49	2.38	0.09	0.05	0.02	0.13	+9.1%
Milk protein, %	3.64	3.57	3.73	3.60	0.10	0.48	0.19	0.44	•
Milk protein, lb/day	1.79	1.65	1.72	1.63	0.07	0.21	0.18	0.40	
Milk lactose, %	4.72	4.73	4.66	4.71	0.02	0.23	0.10	0.55	
Milk lactose, lb/day	2.31	2.18	2.16	2.14	0.04	0.21	0.03	0.23	

¹ALF-GR = alfalfa-grass mix; RC-GR = red clover-grass mix ²SEM = standard error of the mean

Milk urea nitrogen (MUN) in cows fed alfalfa- or red clover-grass mix

Milk fatty acids in cows fed alfalfa- or red clover-grass mix

	Wee	ek 4	Week 7		Week 7				<i>P</i> -va	lue
Fatty acids, %	ALF-GR ¹	RC-GR ¹	ALF-GR ¹	RC-GR ¹	SEM ²	Forage	Week	Forage × Week		
trans-10 18:1	0.15	0.19	0.19	0.21	0.01	0.01	<0.01	0.38		
trans-11 18:1	1.12	1.15	1.20	1.20	0.07	0.92	0.02	0.58		
<i>cis</i> -9, <i>trans</i> -11 18:2 CLA	0.42	0.39	0.46	0.42	0.03	0.37	< 0.01	0.67		
α-Linolenic acid (ယ-3)	0.67 ^b	0.85 ^a	0.61 ^b	0.87ª	0.03	<0.01	0.05	<0.01		
Σω-6 fatty acids	2.20	2.43	2.14	2.48	0.07	0.02	0.85	0.09		
Σω-3 fatty acids	0.73 ^b	0.93 ^a	0.67 ^b	0.95 ^a	0.03	<0.01	0.08	<0.01		
ယ-6/ယ-3 ratio	3.04 ^a	2.62 ^b	3.22 ^a	2.62 ^b	0.03	<0.01	<0.01	<0.01		

¹ALF-GR = alfalfa-grass mix; RC-GR = red clover-grass mix ²SEM = standard error of the mean

Dry matter intake (DMI) and milk production in cows fed red clover (RC) or red clover-white clover (RC-WC) mix (Trial 2)

Summary and Conclusions

- Increased proportion of legume forages in dairy diets has potential to improve dietary NE_L concentration, as well as feed intake and milk production
- Based on the UNH Feeding Trial 1, alfalfa increased milk fat production while red clover reduced MUN and improved ω-3 fatty acids
- Replacing red clover with white clover did not improve intake and milk production (UNH Feeding Trial 2)
- Further research is needed to evaluate the effect of increasing legume on pastures through interseeding management and measure animal production responses

Acknowledgments

University of New Hampshire College of Life Sciences and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

Sustainable Agriculture Research & Education

